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We are concerned with theoretical modelling of unsteady, two- 
dimensional detonation waves in high energy solids. A mathematical 
model and a numerical method to solve the associated hyperbolic 
system of equations are presented. The model consists of the Euler 
equations augmented by extra conservation laws and source terms to 
account for chemical reaction and tracking of materials. Both the ther- 
modynamics and the chemistry are treated in a simple way. Using a 
detonation analogue due to Fickett, we test several numerical methods 
and assess their performance in modelling the essential features of 
detonation waves. The numerical method selected for the full model is 
an extension of the conservative, shock capturing technique of Roe, 
together with an adaptive mesh refinement procedure that allows 
the resolution of fine features such as reaction zones. Results for some 
typical tests problems are presented. @ 1993 Academic Press, Inc. 

1. INTRODUCTION 

This paper is concerned with numerical simulation of 
detonation waves in high-energy solids (chemical 
explosives). A detonation wave is a shock wave that 
precedes and is driven by a zone of chemical reaction. The 
passage of the shock wave through the explosive initiates 
chemical activity which in turn generates chemical-energy 
heat release that sustains the propagation of the shock 
wave. The recent book by Fickett and Davies [ 111 is a 
useful compendium of information about the detonation 
phenomenon which makes it clear that such waves are 
physico-chemical phenomena of extreme features. They 
travel at typical speeds of 8000 m/s; the reaction zone has a 
typical width of lop4 m and typical times to complete the 
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reaction are of the order of lO-‘j s; typical peak pressure 
values are 50 to 100 giga Pascals. 

Studies aimed at understanding the detonation 
phenomenon have relied heavily on experimental work, but 
this approach is always expensive, often dangerous, and 
sometimes impossible. Theoretical studies, on the other 
hand, have their own difficulties. 

If the explosive is a heterogeneous material, which in 
practice is most likely, then multi-phase flow models must 
be adopted. This can lead to ill-posed mathematical 
problems [25, 123. Single-phase flow models are reasonably 
well understood but might not furnish accurate descriptions 
of reality. The thermodynamic behaviour of high explosive 
material in the construction of realistic equations of state is 
an active area of current research. Knowledge of the charac- 
ter and speed of the chemical change is also far from com- 
plete and requires a continuing research effort in its own 
right. For almost any moderately realistic model for the 
fluid dynamics, the thermodynamics, and the chemistry of 
the detonation problem, the complexity of the equations 
will be such that analytical tools for their solution will 
almost certainly be ruled out. There is a very impressive 
body of work based on analytical approaches (e.g., [3, 26]), 
but this is strictly for the special case of steady detonations. 

In recent years, numerical methods have become a useful 
alternative method of solution, which, if carefully used, can 
assist in the understanding of the behaviour of detonations. 
However, there are some specific problems associated with 
the numerical simulation of these phenomena. One problem 
is the accurate resolution of shock waves. Detonation waves 
have very strong shocks. Typical pressure ratios across the 
shock are of the order of 106. Naive numerical methods 
must be discarded immediately if the leading shock wave is 
to be accurately resolved [S]. The reaction zone attached to 
the shock presents another numerical difficulty. It must 
be resolved accurately, for it is the very mechanism that 
sustains the leading shock and thus the detonation itself. 
Given the small width of the reaction zone, accuracy in its 
resolution requires very tine meshes. For models of two- 
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or three-dimensional behaviour this poses a virtually 
impossible computing task if regular static meshes are used. 

Another numerical problem occurs in the treatment of the 
source terms that must be present in the conservation equa- 
tions. Modern numerical methods based on the solution of 
local Riemann problems have proved very successful in con- 
ventional unreactive compressible fluid dynamics [23]. The 
presence of source terms in the governing balance equations 
presents new numerical problems for which the theory is 
still tentative [24, 271. The problem is made even more 
serious by the kind of reactive flow problem posed by 
detonation waves. The time scale associated with the flow 
(sometimes called hydrodynamic time) can be several 
orders of magnitude larger than typical times associated 
with the chemical reactions involved. A consequence is that 
the source terms governing the release of chemical energy 
can lead to stiff systems of equations. For example, if time- 
operator splitting is used to deal with the source terms then 
at each time step one must solve a stiff system of ordinary 
differential equations. Leveque and Yee [17] have clearly 
demonstrated the need for caution in this respect, although 
we have not experienced their problems with the simple 
source terms that we have used during the present work. 

A numerical problem that is linked to the modelling 
problem is that of distinguishing, without ambiguity, 
between the various materials that may be involved (e.g., 
unreacted solid explosive, metal container or casing, com- 
bustion products, ambient material). One approach, that is 
attractive in its simplicity, augments the system of conserva- 
tion laws and adapts the shock-capturing philosophy to 
find material interfaces [20]. There are still, however, 
unresolved problems with this approach. 

In this paper we adopt a simplified mathematical model 
consisting of the unsteady two-dimensional Euler equations 
of gas dynamics with an ideal equation of state suitably 
augmented to represent the chemistry. A very simple 
reaction rate equation is chosen. The complete model and 
underlying assumptions are described in Section 2, in 
Section 3 we justify the choice of our numerical method. 
This is based on extensive numerical experimentation of a 
detonation analogue due to Fickett [lo]. In Section 4 we 
describe the numerical method, which is an extension of one 
originally due to Roe [22]. In Section 5 we introduce a 
time-dependent adaptive gridding procedure to resolve fine 
features such as shock waves and reaction zones. Numerical 
tests are presented in Section 6. 

2. MATHEMATICAL MODEL 

The governing equations are the Euler equations, 
describing inviscid compressible flow with the chemical 
reaction added. The model allows for a single chemical reac- 

tion to take place, during which the unreacted material A 
changes into the reaction product B. The chemical reaction 
is modelled by a reaction progress variable II, which denotes 
the mass fraction of material B, and accordingly assumes 
values between 2 = 0 (unreacted; pure A) and 1= 1 
(reaction complete; pure B). Using p to denote the density, 
u and v the velocity components, p the pressure, and E the 
total energy, the equations read 

(P), + (PUL + (PV), = 0 (la) 

(PUL + (P2 + PL + (w), = 0 (lb) 

(PV), + (PUVL + (PV2 + P), = 0 (lc) 

(E),+(uE+up),+(vE+vp),=O (Id) 

(A), + u(A), + v(l), = r. (le) 

The first four equations in (1) express the usual conserva- 
tion of mass, two momenta components, and energy. The 
fifth is a rate equation, describing the rate of production of 
reacted material B along particle paths. To complete, the 
equation of state and the reaction rate must be related to the, 
thermodynamic and chemical state of the material; for 
example, 

P = P(P, e, 2) (lf) 

r = r(p, e, 11, (k) 

with e being the internal energy per unit mass. Various 
choices are possible here for the equation of state. In this 
model, we use the equation of state for ideal gases, which in 
the reactive case allows for heat release due to chemical 
activity and reads 

P e=--AQ. 
P(Y-1) 

(2) 

Here, y is the usual specific heat ratio and Q is the heat 
release per unit mass of the material. The total energy E 
is related to the internal energy in the usual way, 
E= pe + $p(u* + v’). Although based on the ideal gas 
assumption, Eq. (2) still makes a good approximation for 
modelling the chemical activity in solid explosives, with Y 
constant taken as y z 3 (see [lo]). Other, more realistic, 
choices include the JWL equation of state (e.g., [ 111). 

In general, the reaction rate r may depend on I as well as 
on the density p and the internal energy e. Here, we adopt 
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the simple reaction rate proposed by Fickett [lo], which 
does not depend explicitly on the flow variables, 

r=f (1 -Iz)i’2, (3) 
R 

where TR is a typical time associated with the reaction. This 
choice of reaction rate has the property that the reaction 
along particle paths is complete within a finite time TR, 
yielding reaction zones of well-determined finite widths. 

To solve problems involving more than one chemical 
material with possibly different heat release constants Qj, 
the model (1) has to be extended. In particular, it should be 
possible to identify without ambiguities each material dur- 
ing the course of calculation and so choose the value of Qi 
accordingly. One such example is the rate-stick problem, 
where chemical reaction is taking place in a reactant 
encased within a non-reacting material (e.g., air or a metal 
container). Misidentifying the material may, for example, 
allow chemical reaction to take place in a non-reactive 
medium. This may lead to incorrect energy balance via a 
wrong amount of energy release during the burning process. 
To avoid ambiguities, one should be able to identify and 
follow the propagating material interfaces. For this purpose, 
we adopt an interface capturing technique, recently 
proposed by Osher and Sethian [20] which is capable of 
handling complicated topological merging and breaking of 
moving subdomains in quite a natural way. We make Q a 
piecewise constant function Q = Q(x, y, t), representing the 
local heat release constant. Being passively carried with the 
fluid, Q(x, y, t) has an initially known distribution and its 
evolution is governed by the advection equation 

Qt+uQx+~Q~=o, (4) 

expressing that Q remains constant along particle paths. 
Initial discontinuities in Q are later represented by smeared, 
rapidly varying, Q profiles. The location of the interface 
between material A with QA and material B with QB is given 
by the interpolated contour Q(x, y, t) = $(Q, + QB). 

For computational convenience, we have used (la) to 
express the equations for both 1 and Q in conservation form 
(the former with a source term). The complete model of 

unsteady compressible reactive Euler equations in two 
space dimensions is given by 

W, + F(W), + G(W), = S(W) (5) 

w= F= 

G= 

p = (y - l)[E- $p(u* + u’) + pLQ] 

r=f (1 -l)l/*. 
R 

An “ignition criterion” is used to decide whether reaction is 
initiated, which is based on (a) local pressure level and (b) 
heat release variable. The combined criterion takes the form 

P ’ pact; Q ’ Qact sources activated 

otherwise sources not activated. 

The first condition ensures that reaction is initiated only if 
local pressure is greater than a given threshold pressure pact, 
the choice of which is dictated by chemical considerations. 
The second distinguishes between reactive and non-reactive 
flow regions. Setting Qa,, at Q,,, = Q*/2, Q* being the heat 
release constant of the reactive material, locates the inter- 
face between reactive and non-reactive materials and 
ensures that reaction takes place only in the reactive part of 
the flow. 

For later reference, the Jacobian matrices of (5) are given 
by 

i 

(Y-11) -b-u* (3-Y)U -(Y - l)u y-1 (Y--l>Q b-l)1 

-uv 0 0 0 
A= (6a) 

-u H-yb) H-(y’- l)u* -(y ~1)~ YU (~--1)Qu (y-l)Au 

-Ul 1 0 0 U 0 
-UQ Q 0 0 0 U 
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B= 

0 0 1 0 0 0 
-ulJ V 24 0 0 0 

(Y-11) Tb-v2 -(Y - lb (3-Y)V Y-1 (Y-l>Q (Y-1v 

H-vb) -(y-1)~ H-(y-1)v2 YV (y-l)& (y-l)li 

-V/l 1 

-vQ 42 

0 0 V 0 
0 0 0 V 

with 141 = Jm the flow velocity, b = q2 - 2LQ, and H 
the specific enthalpy function 

E+P H=- 
P . 

The speed of sound is given by 

a’=$=(~-l)[H-;q2+.iQ . 1 
The Jacobian matrix A(W) admits six characteristic speeds 
(counted with multiplicity), which are given by the diagonal 
matrix 

,4 = diag(u - a, u, u, u, u, u + a) (7) 

and the corresponding matrix of right eigenvectors is 

R(W) = 

/ 1 10 0 0 1 
u-u ZJ 0 0 0 u+a 

V v 1 0 0 v 
H-m $q2 v -Q -1 H+ua 

I $a. 0 1 0 A 

, Q fQ0 0 1 Q i 

. (8) 

The eigenspace associated with the four equal eigenvalues 
can, of course, be represented by an arbitrary set of basis 
vectors, but some sets have more physical meaning than 
others. Columns 2 to 5 of (8) represent respectively distur- 
bances associated with an entropy wave, a shear wave, a 
material interface, and a reaction front. The eigenstructure 
of the Jacobian matrix B has a similar form. 

3. THE CHOICE OF NUMERICAL SCHEMES 

Using Eqs. (5), we wish to model detonation waves. 
These are fast moving strong shock fronts of negligible 
thickness and spiky profiles, followed by a narrow reaction 

(6b) 

zone, inside which the flow relaxes from its frozen post- 
shock state to its. new equilibrium state. Accurate resolution 
of flow details inside the reaction zone is extremely impor. 
tant, for it is the heat released during the reaction that 
sustains the propagation of the leading shock. A suitable 
numerical technique should thus be capable of capturing 
cleanly strong spiky shocks and of accurately resolving the 
flow structure in the narrow reaction zone that follows. 
A variety of modern methods exist, which have produced 
very impressive results when applied to chemically non- 
reactive gas. Their adequacy for problems which are further 
complicated by chemical activity is not obvious and 
requires further study. 

Broadly speaking, we have looked into two main classes 
of techniques: (a) deterministic high-resolution schemes and 
(b) random-choice methods. We have also studied hybrid 
schemes in an attempt to combine the merits of both classes. 
Schemes in the first category are essentially shock-capturing 
algorithms, which do not require a special procedure to 
resolve disctontinuous flow features. As a consequence, flow 
discontinuities and sharp corners tend to be smeared over 
several mesh intervals. The schemes having reached a high 
degree of sophistication, the smearing can be kept down to 
no more than three to four mesh intervals. This requires 
one to build into the numerical scheme some monotonicity 
constraint, such as the TVD concept of Harten [ 141 or the 
positivity condition [8]. On the one hand, such properties 
enhance clean shock capturing by suppressing non-physical 
oscillations near flow discontinuities. On the other hand, 
they tend to clip spiky pressure profiles, so they are some- 
what incompatible with the flow features that typify detona- 
tion waves. Although based on one-dimensional physics, 
their performance is frequently not degraded by much when 
extended to multidimensional problems. Random-choice 
based techniques have the unique feature that one-dimen- 
sional discontinuities in the data are preserved as sharp 
discontinuities at all later times. These techniques are ideaf 
for the representation of shocks and contact surfaces but 
are notorious for suffering from noisiness in smooth flow 
regions, a feature which is further amplified by the presence 
of source terms in the equations. Multidimensional exten- 
sions of random-choice based techniques are not able to 
reproduce the clean one-dimensional performance. 
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(3.1) The Detonation Analogue 

Testing the various candidate techniques on the full 
unsteady reactive Euler equations (5) would have been a 
very time consuming and expensive exercise. To speed up 
the process and remain within affordable costs, we have 
used a model test problem, namely the detonation analogue 
proposed by Fickett [lo], as the basis for selecting the most 
suitable numerical scheme. The detonation analogue con- 
sists of a reduced two-by-two system of equations, but at the 
same time retains the essential characteristics of a physical 
detonation, namely strong shocks which initiate strong 
chemical activity. It is therefore likely to pose numerical dif- 
ficulties similar to the ones encountered in a more realistic 
calculation. It also possesses exact steady solutions which 
are helpful in assessing the results. The main limitation of 
the detonation analogue is the absence of a left moving wave 
system, implying that wave phenomena involving reflec- 
tions cannot be accounted for by the model. This still leaves 
a large class of problems for which the model is adequate. 
We next discuss Fickett’s detonation analogue and briefly 
describe its likely solutions. 

The model, written in conservation form with source 
terms, reads 

W, + F(W), = S(W) Pa) 

w = (P, A)’ 

F = (P, O)= (9b) 

s = (0, r)T 

with 

p=ip2+$Q (9c) 
r(A) = 2( 1 -A)“*. W) 

Ignoring dimensional inconsistencies, the variables p, p, I, 
and Q play similar roles as in (5). Equation (9) can 
be regarded as a reactive form of the inviscid Burger’s 
equation. 

In matrix form, (9) reads 

admitting two characteristic speeds 1, =0 and A2 =p. 
The matrix of right eigenvectors is given by 

1 (c) Unsupported Detonation , Py=G< 4.5 

1 

(11) o 1 complete reaction ~reIIoleI~iII “ace 

x.0 
The model admits shocks S with jump condition 

1 (d) Reaction Progress Variable 

s= CPl/CPl* (12) FIG. 1. Likely steady solution profiles of the detonation analogue (9). 

By (9b), i remains continuous across a shock: hence (12) 
reduces to 

s= c~P211cPl = $(p- + P’) (13) 

with ( )’ referring to conditions on either side of the shock. 
Transforming the equations to a frame of reference 

attached to the shock, moving at a constant speed S, exact 
steady solutions, i.e., propagating waves, can be obtained 
which read 

p=S+ [S2-Q(2-t)t]“2 (14) 

with 0 < t < 1. The solution is valid from the leading shock 
(A = t = 0) through to the tail of the reaction zone (A = t = 1) 
(for details see [ 10, 53). Likely solution profiles are depicted 
in Fig. 1, where the value pb specified on the left-hand 

.p P- 

pb 1 reacted material C&reaction zone 

unreacted material 

1 (a) Overdriven Dotonotion , Pb; P,= S 

j ‘//I< x 

1 (b) Overdriven Detonation , Pb= pO>S 
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2 

-x 
x.0 

FIG. 2. Denotation analogue (9): Steady CJ propagating wave. 

boundary selects one of the three possible cases, according 
to whether pb is equal, less than, or greater than S. These 
cases are referred to as a CJ wave, unsupported detonation, 
and overdriven detonation, respectively. Figure Id depicts a 
typical profile of the reaction progress variable for all three 
cases. 

(3.2) Test Problems 

We consider two test problems, illustrated in Figs. 2 
and 3. 

PROBLEM 1. The initial condition is the steady exact 
solution (14) with S2 = Q. For this particular choice, p in 
linearly distributed across the reaction, and pe at the tail of 
the reaction zone is equal to S, the steady shock speed. The 
density on the boundary is pb = p, = S. The profile should 
be convected without distortion by the numerical scheme. 
Although this is probably the simplest test one can devise 
for the analogue, it already serves to discard some of the 
numerical methods used (see Fig. 2). 

PROBLEM 2. The initial condition is a uniform shock 
with pb = pe = S. The reaction is initiated. The combination 
of shock and reaction should develop into the steady profile 
of Problem 1, the exact form of which is known (see Fig. 3). 

p I t=ts 

‘b 

FIG. 3. Detonation analogue (9): Uniform shock developing into a 
steady CJ propagating wave. 

The “ignition criterion” used to switch source terms on is 
P ’ Pact 3 with pact = 4.0. 

(3.3) Numerical Schemes 

In the following, W denotes the vector of unknowns, p 
the vector of flux functions, and S the vector of source terms. 
Six numerical methods are considered which are briefly 
described below for homogeneous systems. The’ source 
terms are incorporated into the algorithm via time operator 
splitting, using the simple forward Euler formula for 
ordinary differential equations (ODES). For more com- 
plicated rate equations, this may not be sufficient and alter- 
native integrators may be needed (e.g., Runge-Kutta type 
or even stiff integrators). All our candidate methods are 
explicit, even though an implicit method would have 
allowed us to incorporate stiff source terms within the 
scheme without resorting to splitting. However, it is well 
known that implicit schemes do not show any advantage 
(and are usually decidedly disadvantageous) for transient 
shock problems without reaction. A second procedure is to 
treat only the reaction equations implicitly, as in Yee and 
Shinn [31], but his did not prove necessary for out simple 
model problem. 

The MacCormack Method. This is a two-step prediction 
-correction variant of the Lax-Wendroff finite difference 
scheme [ 181, 

WF=W;-$;[F(W;,,)-F(W;)I 

w;+l=’ 2(W,++W;)-$[F(W,+)-F(W,t,)]. 

Practical applications normally involve the use of artificial 
viscosity to enhance stability, which will not be discussed 
here (see [18, 11). 

Godunou’s Method. This two-step method [ 133 uses the 
solution of the Riemann problem to obtain provisional 
values for intercell fluxes. It takes the form 

where WJ’:$j are the solution of the Riemann problem with 
data WT and WJ’+ 1 at the respective cell interfaces. Details 
of the exact solution to the Riemann problem for the 
homogeneous detonation analogue (i.e., (10) without the 
source terms) can be found in [S]. 

The Random Choice Method (RCM). The RCM, 
originally proposed by Chorin [4], is again a Riemann 
problem-based technique. It solves the two Riemann 
problems at cell interfaces i + l/2 and assigns W: + l a value 
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based on a random sampling of the exact solution inside the 
cellj at time level n + 1. The random sampling uses the van 
der Corput sequence of pseudo random numbers [6]. The 
method possesses the unique feature that it is able to repre- 
sent discontinuities with zero width but has a random error 
in their position. 

Higher Order RCM. The higher order RCM, is 
essentially a random generalisation of Godunov’s scheme, 
namely 

w;+l = W;+W+ I)-F(kj,j- l)], 

where F(&j,j+ 1) is based on exact solution of the 
Riemann problem and is evaluated at a random position 5 
in the interval (i, i + 1 ), at half time level. A hybridised ver- 
sion of this method is also studied, where the traditional 
RCM is used at large discontinuities (see [29]). 

Flux Difference Splitting Method (Roe’s Scheme). This 
method [22] uses an approximate Riemann solver to model 
wave interaction at cell interfaces. It uses the exact solution 
of a locally linearised model 

w, + A(W,, W,) w, = 0, 

where 2 is a iocal average of the Jacobian matrix in (lo), 
satisfying 

A”(&, W,)W, - W,) = (F, - FL). (15) 

This property ensures that the solution to the linearised 
problem is exact if the data correspond to a single discon- 
tinuity. For the detonation analogue, the average A” is as in 
(lo), with p replaced by p = $(pL + pR). The method is of 
Godunov type with the interface flux given by 

Fj+ 112 = T! (F, + FR) 

algorithm. The original MFE was first introduced by Miller 
and Miller [19] and has been successfully applied to 
homogeneous hyperbolic problems. The algorithm begins 
by expanding W in a set of linear basis functions U, with 
nodal amplitudes uj, 

W = C ajuj. 

The basis functions uj = orj(X, S), are linear functions of 
compact support, and S = S(t) is a time-dependent vector of 
nodal positions S,. Differentiating W with respect to time 
and projecting the flux F into the same space leads to an L, 
minimisation problem of the residual 

over the parameters bj( t) and s,(t). Amplitude and nodal 

k 

Here, lk and Tk are the eigenvalues and right eigenvectors of 
A, uk are the local wave strengths, v”, = 1, AT/AX are the 
local CFL numbers, and (Pk is a limiter function equal to p 
zero in non-smooth flow regions but close to one in smooth 
regions. We used the superbee flux limiter [28]. 

i 
0 

2 Moving Finite Element Method (MFE). Like the 
standard finite element method, the MFE method is based 
on projecting the solution into an approximation normed 
space and minimising the error of the solution by an 
optimal choice of coefficients. It has the additional feature 

I 

that it allows grid nodes to move to areas of large gradients, FIG. 4. Detonation analogue (9): Steady CJ wave by MFE method, 
their motion being determined by the same minimisation MEM-computed (dotted) and exact (full) solutions. 
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motion are then determined by solving a set of ODES. The 
nodal paths X = Sj (t) are found to be approximations to the 
characteristic curves of the system, so that nodal values uj (t) 
are almost independent of time. Our method followed the 
general lines of the version referred to by Edwards [7] as 
the mobile element method. We comment further on this 
method in the next section. 

(3.4) Assessment of Methods 

All the results, with the exception of the MFE, are for a 
fixed regular mesh. The mesh size DX= 0.5 is such that the 
reaction zone is discretised by 10 points, which seemed a 
reasonable resolution to aim for in realistic problems. 
Figures are shown for selected schemes only. 

Results for Problem 1. The MFE method (Fig. 4) 
produces perfect results. This should not come as a surprise 

* t 8  

F 
B 6 

4 

2 

B 
0 5 I5 26 25 38 35 +a 45 58 55 60 65 76 

DISTANCE 

5 15 20 25 38 35 4B 45 58 55 68 65 78 

DISTANCE 

DISTANCE 

FIG. 5. Detonation analogue (9): Steady CJ wave by RCM method 
and exact solution (full line). 

since, by construction, all nodes are moving at the shock 
speed S and the steady problem is somewhat redundant. 

The RCM (Fig. 5) preserves a sharp shock profile 
although its position is affected by randomness. Peak shock 
values are very accurate. The discontinuity in density- 
derivative at the tail of the reaction zone is also accurately 
captured. The reaction zone has the correct width but the 
flow profile inside it is also affected by randomness. The 
randomness in the reaction zone can be eliminated by using 
the hybrid version of higher order RCM, although it is still 
apparent in the shock position where standard RCM is 
used. 

Godunov’s method produces smeared shocks and rounds 
the tail of the reaction zone. Consequently, the reaction 
zone appears to occupy twice the correct width after about 
10 time units. Also, frozen shock values are not attained 
accurately. 

10 

8 
E 
;; 6 
E 

4 

2 

B 
B 5 15 28 25 38 35 40 45 58 55 68 

DISTANCE 

e 5 15 28 25 30 35 48 45 58 55 
DISTANCE 

DISTANCE 

FIG. 6. Detonation analogue (9): Steady CJ wave by Roe’s method 
and exact solution (full). 
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Roe’s method produces very satisfactory results (Fig. 6). 
The shock profile is reasonably sharp and shock peak values 
are reasonably accurate. 

Finally, the MacCormack scheme produces typical 
density oscillation behind the shock which completely con- 
taminates the reaction zone. The density-based ignition 
criterion causes the reaction to stop temporarily due to 
density undershoots. This affects the I profiles which should 
otherwise be smooth, since the rate equation itself is inde- 
pendent of p. For more realistic rate equations, 1 profiles are 
expected to be worse. The method as applied (no artificial 
viscosity) is clearly inadequate. 

Results for Problem 2. On the basis of the previous 
results, we have excluded the MacCormack and Godunov’s 
schemes. We have also excluded the MFE method. We did 
not succeed in producing acceptable results for this more 

FIG. 7. Detonation analogue (9): Unsteady CJ wave by MFE FIG. 8. Detonation analogue (9): Unsteady CJ wave by RCM 
method, computed (dotted) and exact (full) solutions. method. 

realistic unsteady problem. As nodes follow characteristic 
paths, they are removed from the reaction zone without 
being replaced, leading to poor resolution of flow features 
(Fig. 7). We do not rule out the possibility that some way of 
rescuing the MFE method can be found, but we expect that 
it will not be easy. The performance of the rest of the 
methods is similar to Problem 1. They all proved capable of 
initiating the detonation and carrying it to a steady state in 
about the same time (See Figs. 8 and 9). 

Conclusions. We found MacCormack, Godunov, and 
MFE inadequate for the modelling of unsteady detonations. 
The remaining methods, RCM, Hybrid, and Roe, all 
produced satisfactory results. In view of the fundamental 
difficulty in extending random choice based techniques to 
more than one space dimension, and in view of the growing 
experience in applying Roe’s method to multidimensional 
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Each of the first two stages (18a), (18b) is solved using an 
extended solver of Roe type. The third stage (18~) requires 
an ODE time integrator. 

We now describe the one-dimensional Roe solver in the x 
direction. The solver in the y direction follows in an 
analogous fashion. The approximate Riemann solver used 
by Roe’s method is based on local linearisation of the 
Jacobian matrices. For consistent shock capturing [22], 
the Jacobian matrix A is to be evaluated at some data- 

01 STANCE dependent average state A” = a(W), W = w(W,, W,) such 
that the Roe condition (15) is satisfied, for two arbitrary 
states W, and W,. The condition (15) is an over-specified 
problem for which a solution may not exist. It can be shown, 
however, that for the present model (5) a unique linearisa- 
tion does exist, which satisfies (15) with local averages, 

b=&k; R=&G7K 
~2 = (uL + RqJ( 1 + R) 

e ! ! \,\,l,t,\*k,\,g, , 
e 5 ’ ie is 26 25 38 35 40 45 56 55 66 

DISTANCE v” = (uL + RqJ( 1 + R) 

y3 R=(&+R&)/(l+R) 
(19) 

FIG. 9. Detonation analogue (9): Unsteady CJ wave by Roe’s 
method. 

I = (A, + RI,)/( 1 + R) 

t?= (QL+RQRM~ +R) 

and the average speed of sound is calculated from 

ii2 = (y - l)[t7- #‘+ 3) + XQ]. 

Simple waves of the linearised problem are then identified 
by projecting local gradients into the characteristic fields of 
the system. Local wave strengths ak are found by solving 

WR - WL = 1 akFk, 
k 

problems with complicated equations of states, using 
irregular and adaptive grids, we have selected Roe’s method where fk are the eigenvectors in (8), evaluated at the average 
to solve the 2D unsteady reactive Euler equations (5). state W. Using A( ) = ( )R - ( )r to denote spatial gradients, 

the ak’s are 

4. EXTENSION OF ROE’S METHOD 

The system we wish to solve can be written in matrix 
form, 

W, + A(W) W, + B(W) W, = S(W) (17) 

with A(W) = dF/BW and B(W) = aG/aW given by (6). The 
algorithm we use is a space-time operator split algorithm, 
where the solution is evolved in three decoupled stages, 

aI = [Ap - pZ Au]/2d2 

a2 = [ii’ Ap - Ap]/ii* 

a,=6 Au 

a,=p Al+$xa, 

a,=P AQ+foa2 

a6 = [Ap + p”ii Au]/2Z2. 

(20) 

W,+A(W)W,=O The solution is then updated by a Godunov-type formula, 

W,+B(W)W,=O 

w, = S(W). 

(18) 
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The intercell fluxes are given by 

Having obtained predicted W* values via flux updates 
in the main directions, a corrected value is calculated which 
accounts for the source contribution. For the simple rate 
equation used by the model (5), it has proved sufficient to 
apply a forward Euler integrator 

W;; ’ = Wfj + AT. S(Wzj). (21) 

Stable and accurate time integration of more complicated 
rate equations will probably require more elaborate 
integrators, e.g., Runge-Kutta type integrators. Since time 
scales associated with the chemical reaction are typically 
several orders of magnitude smaller than those associated 
with the hydrodynamics, the resulting source functions may 
lead to stiff systems of equations and require stiff ODE 
integrators [ 173. 

An “ignition criterion” is used, based on predicted 
pressure and heat release variable estimates, 

Pi,j>Pact; Qi,j>Qact sources activated 

otherwise sources not activated. 
(22) 

There are still several unresolved problems with the model 
and the proposed algorithm: 

Oscillations in Q. The sixth component of Eq. (5) is 
incorporated into the model in order to allow the distinc- 
tion between materials with different heat release constants 
and, in particular, between reacting and non-reacting flow 
regions. Local values of the heat release variable are 
calculated from a conservative update of p and pQ, 

and are expected to approximate a piecewise constant func- 
tion, separated by contours of material discontinuities. 
Across the non-uniform regions, Qi,j is expected to 
change monotonically from Qmin to Qm,, with the value 
0.5(Q,, + em,,) marking the material interface. Although 
both (pQ) and (p) change monotonically across contact 
surfaces, Q worked out from (23) need not necessarily do so. 
Indeed, small overshoots in Q profiles can be observed, 
mainly in very early stages of the calculations. 

One possible remedy is to use the primitive form (4), so 
that Q itself is one of the flow variables solved for. Numeri- 
cally, this will require a different solution algorithm for Q 

than for the rest of the governing equations, and the small 
prospective gains in accuracy are outweighed by the 
added computational inconvenience. A crude cure that has 
been considered is to force Q,,, to lie inside the range 
[Qmin, Q,,,], but was found unstable. We have also 
considered a more subtle cure, based on replacing the 
conservative solution algorithm by a consistent primitive 
algorithm near the interface [ 151. The primitive algorithm, 
suitably modified to account for leading conservation errors, 
has offered accuracy gains near contact surfaces in other 
two-phase flow models which did not include chemical 
reactions [16]. In the present model, however, applying 
the primitive algorithm only in certain flow regions led to 
instabilities. 

Since nodal values of Q are only used in the ignition 
criterion (22), these small overshoots in Q profiles are not 
believed to present a serious computational difficulty, but 
rather an aesthetic one. The tactic which has proved best is 
to let Q profiles settle without taking any external measures. 
Indeed, the early overshoots in Q gradually disappear, 
yielding monotonic Q profiles after as few as 15 time steps 
(see Fig. 10). 

Negative internal energies. This phenomenon is not 
unique to reactive flow modelling. It may also occur in non- 
reactive models, but it tends to be amplified by the chemical 
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FIG. 10. Two-dimensional reactive Euler equations (5): oscillation in 
Q near material interfaces: Computed solution after (a) 10, (b) 20, (c) 30, 
and (d) 70 time steps. 
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activity. It has been observed that under certain flow condi- 
tions, particularly near low densities, the code may predict 
negative pressures/densities. This immediately leads to a 
failure of the scheme through the calculation of the local 
sound speed. Crude replacement of negative values by 
positive ones not only destroys conservation, but was also 
found to be unstable. As analysed in [9] for non-reactive 
flow models, this failure may occur with any Godunov-type 
scheme based on a linearized Riemann solver. For the par- 
ticular case of Roe’s scheme, the “explanation” for the 
failure was that the numerical signal velocities predicted by 
the local linearization underestimated the physical signal 
velocities. A condition has been established to ensure that 
densities and internal energies remain positive by suitably 
modifying the numerical signal-speeds in the dangerous 
regions. As it is, this condition is applicable only to non- 
reactive flows and the analysis is strictly valid for the first- 
order version of Roe’s scheme and for certain simplified 
data. Similar analysis is required for the reactive case, which 
is further complicated by the presence of source terms. 
To data, this has not been done. 

5. ADAPTIVE GRIDDING 

It is easily demonstrated that some form of adaptive 
gridding is a pre-requisite for the computation of detonation 
driven flows produced by explosive devices such as the rate- 
stick. For example, consider a cylindrical charge of Hmx- 
based explosive with diameter 80 mm and length 100 mm. 
The reaction zone for this type of explosive can be as narrow 
as 0.022 mm. Now, calculations to model problems indicate 
that at least 10 mesh cells are required to adequately resolve 
the reaction zone. Consequently, if a uniform mesh is 
used to discretize the computational domain then an axi- 
symmetric calculation would require some 8 x lo6 mesh 
cells, while a full three-dimensional calculation would need 
4 x 10” mesh cells. These grids would be much too large for 
practical purposes. However, an adaptive gridding tech- 
nique could significantly reduce, possibly by several orders 
of magnitude, the number of cells required to discretize the 
computational domain. 

Many different adaptive grid strategies have been 
described in the literature, but space does not permit a dis- 
cussion of the relative merits of these schemes applied to 
detonation problems. Suffice it to say that we have chosen 
a method that is loosely based on that proposed by Berger 
[2]. Here, we simply attempt to impart the main features of 
the scheme and note that full details are given by Quirk 

The computational domain is discretized into a set of 
embedded meshes. Each mesh forms a logically rectangular 
patch ruled by I, J co-ordinate lines, and these lines are con- 

FIG. 11. Three grid levels: Coarse, medium, and fine. 

tinuous between neighbouring patches. An embedded patch 
refines part of an underlying coarse patch. The cells of the 
embedded patch are formed by sub-dividing coarse patch 
cells. The number of sub-divisions along the I and J co- 

ordinate lines are arbitrary integers and are typically set to 
four. It is possible to group the meshes to form a hierarchi- 
cal grid system. A level I is associated with each mesh, this 
represents the number of coarser meshes underlying a given 
mesh. Thus, the coarsest mesh is at level 0, and progressively 
liner meshes are at levels 1,2 3 . . . . I max. The meshes at level 1 
may be grouped together to form the effective grid at level 
Z, namely G,. Fine meshes at level 1 must be embedded in 
coarser meshes at level I- 1, therefore it follows that the fine 
grid G, is wholly embedded in the coarse grid G,_ 1, 
GI s G,- 1. Figure (1 la) shows a line grid, G,, embedded in 
a medium grid G, , which in turn is embedded in a coarse 
grid Go. It is important to note that there is a continuous 
coarse grid, and a coarse grid solution below every 
embedded mesh, see Fig. (1 lb). 

The scheme also refines in time as well as in space; also, 
smaller time steps are taken on tine grids than on coarse 
grids. This refinement in time makes the adaptive procedure 
particularly suitable for detonation calculations. It allows 
comparable Courant numbers to be used during the 
integration process of each grid level. This improves the 
accuracy of the integration process, since a Lax-Wendroff 

TABLE I 

Order of Grid Integration 

Grid integrated Time step 

GO At0 
Gl At012 

G2 At014 
G2 AtOf 

Gl AtOJ2 
G2 A1014 
G2 A1014 
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FIG. 12. Adaptive grid calculation: Plane shock escaping from an open-ended shock tube. 

scheme is most accurate for Courant numbers of one. If the 
same time step was used for every cell in the computational 
domain then cells away from the reaction zone would be 
integrated with extremely small Courant numbers. This 
could have an adverse effect on the accuracy of the calcula- 
tion and would also be computationally wasteful. Because 
more integrations are done on line grids than on coarse 
grids, the order of grid integration must be carefully co- 
ordinated. This order for the grid structure shown in 
Table I. Note the recursive interleaving of the different grid 
levels. During the integration process, coarse grids effec- 
tively provide boundary conditions for the embedded tine 
grids. This process requires the interpolation in time of the 
coarse grid solution at the embedded fine mesh boundary. 
Interleaving the order of grid integration minimizes the 
time span over which it is necessary to interpolate. 

The adaption of the grid structure to an evolving flow 
results in the embedded grids gliding along their respective 
underlying coarse grids so as to keep pace with any discon- 
tinuities within the flow field. This process is completely 
automatic and has proved very robust for computing solu- 
tions to the unreactive Euler equations. Figure 12 shows the 
density contours that are computed for a plane shock escap- 
ing from an open-ended shock tube. The flow is assumed to 
be axi-symmetric and so we need only to compute a solution 
for the top half of the tube. A coarse mesh of 70 by 40 cells 
was used to discretize the computational domain. Two 
levels of embedded grids were employed, each having a 
spatial refinement factor of four. Thus the finest level grid 
has the same resolution as a uniform grid of 1200 by 640 
cells. The quality and accuracy of these results may be 
gauged by comparing them with those calculated by Wang 
and Widhopf [ 301. The calculation was performed on a Sun 
sparcstation I and took less than 12 h of CPU time. An 
analysis of the program using UNIX profiling command 
gprof indicates that only 0.8 % of the processing time was 

spent on the grid adaptation. It was not possible to perform 
this calculation on the equivalent uniform mesh, so it is not 
possible to give an exact figure for the relative processing 
time required for the adaptive and non-adaptive calcula- 
tions. However, estimates based on calculations made with 
coarser grids suggest that the non-adaptive calculation 
could require as much as 30 times the processing time 
required by the adaptive calculation. 

6. NUMERICAL TESTS 

We consider two test problems: 

Problem 1. Initial conditions correspond to the steady 
exact solution of a one-dimensional CJ wave. The reaction 
zone is discretised by 10 grid nodes and the detonation 
profile should be convected without distortion by the 
scheme. Data for an exact solution are given in [ 111 on an 
irregular grid. The data is transformed onto a regular grid 
using linear interpolation. The interpolated values are given 
in Table II and serve to assess the results. 

TABLE II 

Steady CJ Solution 

f (/Js) x (mm) p(Gpa) u (m/s) p (kg/m’) c (m/s) 1. 

0.0 o.ooo 57.80 4250.0 3200.0 7361.0 0.000 
0.1 0.436 54.91 4038.0 3048.0 7352.0 0.190 
0.2 0.893 52.02 3825.0 2909.0 7324.0 0.360 
0.3 1.371 49.13 3613.0 2783.0 7278.0 0.510 
0.4 1.870 46.24 3400.0 2667.0 7212.0 0.640 
0.5 2.391 43.35 3188.0 2560.0 7127.0 0.750 
0.6 2.933 40.46 2975.0 2462.0 7022.0 0.840 
0.7 3.496 37.57 2763.0 2370.0 6896.0 0.910 
0.8 4.080 34.68 2550.0 2286.0 6747.0 0.960 
0.9 1.686 31.79 2338.0 2207.0 6574.0 0.990 
1.0 5.313 28.90 2125.0 2133.0 6375.0 1.000 
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Problem 2. This is an unsteady two-dimensional rate- 
stick problem, modelling a reactant encased within an inert 
material (see Fig. 13). Initial conditions are 

pl=1.0x105Pa 

p 1= 1600.0 kg/m3 

u 1 = 0.0 m/s 

u 1 = 0.0 m/s 

11 = 0.0 

Q 1 = 4515600.0 J/kg 

p2 = 28.9 x lo9 Pa 

p2 = 2133.0 kg/m3 

u2 = 2125.0 m/s 

v2=0.0m/s 

122 = 1.0 

Q2 = 4515600.0 J/kg 

p3 = 1.0 x lo5 Pa 

p 3 = 2000.0 kg/m3 

u3=O.Om/s 

v3=0.0m/s 

13=0.0 

Q3 = 0.0 J/kg 

corresponding to unreacted material ( )i (pure A), fully 
reacted material ( )2 (pure B) and inert high-density casing 
( )3. States ( )i and ( )Z correspond to conditions at the 
front and tail of the steady CJ wave of Problem 1. They 
are expected to initiate a reaction which, ignoring the effect 
of the inert casing, should develop into the detonation 
profile of Problem 1. The adaptive grid uses a coarse mesh 
of dimensions 80 x 32, with overlayed line patches of reline- 
ment ratio of four covering the initial discontinuities. The 
problem is dependent inherently on a length scale. The 

1 C 1 
FIG. 13. Rate-stick problem initial data: (a) Unreacted material; (b) 

reacted material, and (c) inert casing. 

ET AL. 

calculation is performed with DX = 0.5903 mm, allowing 
the fully developed reaction zone to be represented by ten 
coarse grid cells. The specific heat ratio is y = 3.0. 

Results for Problem 1. Figure 14 shows results for the 
steady CJ wave problem, obtained with the extended Roe’s 
method described in Section 4. The results in general are 
quite good. Shock position and speed are accurate and the 
reaction zone is well represented. A dip in the density.profile 
originates inside the reaction zone, just behind the leading 
shock which gradually moves downstream to the tail of the 
detonation. It is believed to be a result of starting-up errors 
of the method. Similar observations were made with other 
methods (e.g., Godunov’s method). Such start-up errors 
are almost inevitable features of high-resolution shock- 
capturing methods, if the shock profile of the initial data 
differs from what the algorithm accepts as a travelling-wave 
solution, and are commonly observed in inert-flow calcula- 
tions. Here they seem more prominent, probably because 
the reaction spike is harder to resolve than an inert shock. 

Results for Problem 2. Figures 15-23 depict density 
contours and adaptive grid structure for the rate-stick 

DISTANCE 

FIG. 14. One-dimensional reactive Euler equations (5): Steady CJ 
wave by Roe’s method, exact (solid) and computed (dashed) solutions. 
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FIG. 15. Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, initial conditions. 

GRIDS DENSITY CONTOURS 

FIG. 16. Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 20 time steps 

GRIDS DENSITY CONTOURS 

FIG. 17. Twodimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 40 time steps. 
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DENSITYCONTOURS 

FIG. 18. Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 60 time steps. 

GRIDS DENsrw CONTOURS 

FIG. 19. Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 80 time steps. 

GRIDS DENSll-f CONTOURS 

FIG. u). Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 100 time steps. 
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GRIDS DENSITY CONTOURS 

FIG. 21. Two-dimensional reactive Euler equations (5):*Rate-stick problem by Roe’s method, solution after 120 time steps. 

GRIDS DENSITY CONTOURS 

FIG. 22. Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 140 time steps. 

DENSITY CONTOURS 

FIG. 23. Two-dimensional reactive Euler equations (5): Rate-stick problem by Roe’s method, solution after 160 time steps. 

w106/2-3 
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problem. The solution is shown at intervals of 20 time steps. 
A strong shock front is developed followed by a reaction 
zone. At early times, the shock is one-dimensional along the 
central line (line of symmetry) and tends to curve near the 
interface between the reactant and the inert casing. This is a 
result of different propagation speeds in the different 
materials. Strong wave interaction is observed between the 
fully reacted material and the casing. The strong initial 
pressure gradient generates a strong shock wave that pushes 
the casing outwards. A strong expansion fan is observed 
which gradually penetrates the inner part of the reactive 
material. Grid motion, based on local density gradients, 
follows nicely the active flow regions. New fine patches are 
layed down as the flow develops, which are later removed 
when they are not required. 

7. CONCLUDING REMARKS 

Reactive flow problems make more demands on a com- 
putational method than inert flow problems. The difficulties 
arise partly from the fact that we have to resolve not just the 
shock waves but any associated reaction regions. Also the 
narrow spike that typifies detonation waves is very hard to 
capture. 

We have examined, in a simple one-dimensional context, 
one classical scheme (MacCormack’s) and five schemes 
designed for good discontinuity resolution: moving finite 
element (MFE), random choice (RCM), and a hybrid 
extension, a first-order Godunov method and a second- 
order Roe method. The MacCormack scheme was dis- 
carded because of the difficulty of equipping it with a 
suitable artificial viscosity. MFE worked beautifully on one 
problem, but in general did not provide enough control 
over the mesh to give reliable solutions. We could have used 
other moving mesh techniques, although in retrospect we 
feel that they are not as attractive as our actual choice. The 
RCM and its hybrid extension both did well in one-dimen- 
sional tests, but we were unable to find satisfactory two- 
dimensional extensions. The first-order Godunov method 
did not provide sufficient resolution. 

This left the second-order Roe scheme as the only viable 
candidate for further development, although most of the 
related high order Godunov methods would probably have 
served equally well. The linearisation of the Euler equations, 
extended to include mass fraction variables, is not difficult. 

The spatial resolution needed for two-dimensional 
calculations was achieved by adaptive mesh refinement. 
Previous experience with inert problems suggests that this 
idea combines well with high-resolution upwind schemes 
because the upwinding provides accurate fluxes at the 
interface between tine and course grids. This experience was 
confirmed in the present case. 

We obtained well-resolved results for the problem of a 
rate-stick detonated within a confining shell. These clearly 
reveal the distortion of the explosive/casing interface and 
the resulting weakening of the detonation wave. The chosen 
method seems capable of modelling a variety of events in 
both confined and unconfined explosives. 
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